

Journal of Organometallic Chemistry 549 (1997) 31-37

Journal ofOrgano metallic Chemistry

Synthesis and characterization of a series of aminogallanes, $[Me_2GaR]_2$ The crystal structures of $[Me_2GaN(CH_2Ph)_2]_2$ and $[Me_2GaN(CH_2CH_2)_2NMe]_2$

Steven J. Schauer^a, Charles H. Lake^a, Charles L. Watkins^a, Larry K. Krannich^{a.*}, David H. Powell^b

^a Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA ^b Department of Chemistry, University of Florida, Gainesville, FL 32611, USA

> Received 24 November 1996; revised 3 February 1997 received in revised form

Abstract

Me₃Ga was allowed to react with a series of ten amines at 110 °C in toluene to give 75 to 90% yields of the corresponding aminogallanes. $[Me_2GaR]_2 [R = NMe_2, NEt_2, NPr_2^n, NBu_2^n, NBu_2^n, NGc_1G_1)_2, NC_4H_8, NC_5H_{10}, NC_6H_{12}, and N(CH_2CH_2)_2NMe]$, via a 1.2-elimination of CH₄. Similarly, $[Me_2AINBu_2^r]_2$ and $[Me_2AIN(c-C_6H_{11})_2]_2$ were prepared by an analogous thermolysis reaction. On the other hand, synthesis of $[Me_2GaNPr_2^1]_2$, $[Me_2GaNBu_2^r]_2$, and $[Me_2GaN(CH_2Ph)_2]_2$ was achieved by the reaction of Me_2GaCl with the respective lithium amide. A comparison of the ¹H and ¹³C NMR chemical shifts for the aminogallanes with those previously obtained for the analogous series of aminoalanes indicates a similar sensitivity to the influence of the amide moiety. X-ray crystal structures were determined for $[Me_2GaN(CH_2Ph)_2]_2$, which has a slightly puckered four-membered Ga₂N₂ core, and $[Me_2GaN(CH_2CH_2)_2NMe]_2$, which has a planar four-membered Ga₂N₂ core. © 1997 Elsevier Science S.A.

Keywords: Aminogallane; Synthesis; Thermolysis

1. Introduction

Although $[Me_2GaNMe_2]_2$ [1] was prepared almost 50 years ago from the reaction of Me_3Ga and HNMe_2, recently there has been considerable interest in aminogallanes owing to their potential use as single-source precursors for the preparation of gallium nitride [2,3]. Several aminogallanes of the type $[R_2GaNR'R'']_2$ have been synthesized by either hydrocarbon or salt elimination reactions. Thermolysis of R_3Ga [4–11] with a primary or secondary amine results in methane elimination and the formation of the corresponding aminogallane, whereas salt elimination typically involves the reaction of R_2GaCl [12–16] with lithium amides. Recently, alternative methods for the preparation of $Me_2GaC_5H_5$ [17] with amines and $Et_2GaC_5H_5$ [18]

with amines, phosphines, or thiols at or below room temperature results in the formation of the corresponding gallane. Additionally, the reaction of Me₃Ga or Et₃Ga [19] with bulky Me₃SnNRR' derivatives under mild thermolysis conditions (< 60 °C) produces the corresponding aminogallane with elimination of Me₄Sn or Me₃SnEt respectively.

Our laboratory has reported the synthesis of two homologous series of dimeric aminoalanes, $[Me_2AIR]_2$ [20] and $[Bu_2^iAIR]_2$ [21] which were obtained from the thermolysis of Me_3Al or Bu_2^iAIH with the respective amine, with the exception of $[Bu_2^iAINBu_2^i]_2$, which was synthesized by salt elimination. As a continuation of these studies, the thermolysis of Me_3Ga with these amines was investigated to determine the effectiveness of this method toward the synthesis of aminogallanes. Herein we report the synthesis and characterization of a homologous series of aminogallanes, $[Me_2GaR]_2$ (R = (NMe_2, NEt_2, NPr_2^n, NPr_2^i, NBu_2^n, NBu_2^i, NBu_2^s, N(CH_2Ph)_2, N(c-C_6H_{11})_2, NC_4H_8, NC_5H_{10}, NC_6H_{12},

Corresponding author.

and N(CH₂CH₂)₂NCH₃), which were synthesized primarily by the thermolysis of Me₃Ga with the respective amine or by the reaction of Me2GaCl with the respective lithium amide derivative, LiNR, Although several compounds in this series have been reported, they were resynthesized for comparative purposes. The aminoalanes [Me₂ AlNBu₂⁵]₂ and [Me₂ AlN(c-C₆H₁₁)₂]₂ [22] were synthesized in order to complete the previously reported [Me, AIR], [20] series. ¹H and ¹³C NMR chemical shift data are reported for all compounds and are compared to those of the corresponding $[Me_2AIR]_2$. Melting points, IR, MS or cryoscopic molecular weights, and elemental analyses are reported for all new compounds. X-ray structural data have been obtained for $[Me_2GaN(CH_2Ph)_2]_2$ and $[Me_2GaN(CH_2CH_2)_2NMe]_2$ and are compared with literature values for aminogallanes.

2. Experimental

2.1. General procedures

Standard inert atmosphere techniques were used for the synthesis and manipulation of all compounds by use of a high vacuum-line in conjunction with an inertatmosphere drybox (Vacuum Atmospheres HE-43 Dri-Lab). Hexane and toluene were distilled under an atmosphere of nitrogen over calcium hydride. All the amines (Aldrich) were dried over sodium or KOH and distilled prior to use. Me₃Ga was obtained as a gift from Morton Advanced Materials, Danvers, MA, GaCl₁ from Strem, and butyllithium from Aldrich. Benzene- d_6 (Isotec) was stored over molecular sieves. Me, GaCl was synthesized by ligand redistribution from the reaction of GaCl₁ with two equivalents of Me₃Ga. $[Me_2AIN(c-C_6H_{11})_2]_2$ [22], $[Me_2GaNMe_2]_2$ [1], $[Me_2GaNEt_3]_2$, [17], $[Me_2GaNPr_2]_2$, [12], $[Me_2GaNBu_2^i]_2$ [19], $[Me_2GaN(c-C_6H_{11})_2]_2$ [19], $[Me_2GaNC_1H_8]_2$ [7], and $[Me_2GaNC_5H_{10}]_2$ [6,7] were prepared as described below.

¹H and ¹³C NMR spectral data were collected for 0.2 M C₆D₆ solutions using Bruker ARX 300 and DRX 400 NMR spectrometers. Chemical shifts for ¹H and ¹³C NMR data were measured with respect to the solvent. FTIR data were collected using a Bruker Vector 22 FT spectrometer. Samples were prepared as Kel-F (halocarbon) and Nujol mulls on KBr plates. Low-resolution EI-MS data were obtained using the direct insertion probe on a Finnigan MAT95Q spectrometer at 70 eV. Elemental analyses were performed by E + R Microanalytical Laboratory, Inc., Corona, NY. Melting points were obtained with a Thomas-Hoover melting point apparatus using sealed capillaries and are uncorrected. 2.2. General synthesis of [Me2GaR]2 dimers

2.2.1. Method A, from Me_3Ga

In a typical synthesis, 1.50 g (13.1 mmol) of Me₃Ga, 13.1 mmol of the respective amine (HNMe₂, HNEt₂, HNPrⁿ₂, HNBuⁿ₂, HNBu¹₂, HN(*c*-C₆H₁₁)₂, HNC₄H₈, HNC₅H₁₀, HNC₆H₁₁, and HN(CH₂CH₂)₂NMe), and 30 ml of toluene were mixed at room temperature. The mixture was heated to reflux and the progress of the reaction was monitored by using ¹H and ¹³C NMR spectroscopy. Products were isolated by recrystallization from the toluene solutions which were cooled to -15 °C. Product yields were typically 75–90%.

 $[Me_2GaNMe_2]_2$ (1b): m.p. 34°C (33°C [1]). ¹H NMR: $\delta = -0.24$ (s, 12 H, GaC H_3), 2.15 (s, 12 H, NC H_3), ¹³C NMR: $\delta = 10.28$ (GaC H_3), 43.64 (NC H_3). $[Me_3GaNEt_3]$, (2b): m.p. 39-40 °C (39-40.5 °C [17]). ¹H NMR: $\delta = 0.18$ (s, 12 H, GaC H_3), 0.74 (t, 12 H, NCH₂C H_3), 2.68 (q, 8 H, NCH₂). ¹³C NMR: δ -8.38 (GaCH₃), 12.05 (NCH₂CH₃), 41.84 (NCH₂). $[Me_2GaNPr_2^n]_2$ (**3b**): m.p. 53-55 °C. ¹H NMR: δ -0.12 (s, 12 H, GaC H_3), 0.74 (t, 12 H, NCH₂CH₂CH₃), 1.25 (m, 8 H, NCH₂CH₂), 2.70 (m, 8 H, NCH_{2}). ¹³C NMR: $\delta - 8.63$ (GaCH₃), 11.67 (NCH₃CH₃CH₃), 20.60 (NCH₃CH₃), 51.38 (NCH₃). IR: (cm⁻¹) 2962 (s), 2933 (s), 2906 (w), 2877 (m), 1203 (s), 1142 (m), 1116 (m), 1077 (m), 955 (s), 898 (w), 858 (w), 727 (vs), 679 (w), 587 (s), 561 (m), 531 (w). MS: m/z 383, 385, 387 (M⁺ - 15). Anal. Calcd. (found) for C₁₆H₄₀Ga₂N₂: C, 48.05 (48.11); H, 10.08 (9.99); N, 7.00 (7.00).

[Me₂GaNBu₂ⁿ]₂ (**5b**): m.p. 85-87 °C. ¹H NMR: δ -0.07 (s, 12 H, GaCH₃), 0.86 (t. 12 H, NCH₂CH₂CH₂CH₂CH₃), 1.18 (sext., 8 H, NCH₂CH₂CH₂), 1.33 (m, 8 H, NCH₂CH₂), 2.82 (m, 8 H, NCH₂). ¹³C NMR: δ -8.36 (GaCH₃), 14.30 (NCH₂CH₂CH₂CH₃), 21.03 (NCH₂CH₂CH₂), 29.62 (NCH₂CH₂), 49.29 (NCH₂). IR: (cm⁻¹) 2959 (s), 2931 (vs), 2859 (m), 1204 (s), 1171 (w), 1144 (w), 1124 (m), 1078 (w), 1026 (w), 904 (w sh), 885 (s), 726 (vs), 678 (w), 596 (w sh), 585 (s), 565 (m), 528 (m). MS: m/z 439, 441, 443 (M⁺ – 15). Anal. Calcd. (found) for C₂₀H₄₈Ga₂N₂: C, 52.67 (52.92); H, 10.61 (10.66); N, 6.14 (6.18).

[Me₂GaNBu¹₂]₂ (**6b**): m.p. 72–73 °C (72–74 °C [19]). ¹H NMR: δ 0.03 (s, 12 H, GaC H₃), 0.85 (d, 24 H, NCH₂CH(C H₃)₂), 1.95 (sept., 4 H, NCH₂CH), 2.79 (d, 8 H, NCH₂). ¹³C NMR: δ –4.80 (GaC H₃), 22.51 (NCH₂CH(CH₃)₂), 27.04 (NCH₂CH), 58.02 (NCH₂).

 $[Me_2GaN(c-C_6H_{11})_2]_2$ (9b): m.p. 190–191 °C (190– 191 °C [19]). ¹H NMR: δ 0.06 (s, 12 H, GaC H_3), 1.04 (qt, 4 H, NCHCH_2CH_2CH H_{ax}), 1.25 (qt, 8 H, NCHCH_2CH H_{ax}), 1.47 (qd, 8 H, NCHCH H_{ax}), 1.56 (br-d, 4 H, NCHCH_2CH_2CH_{eq}H), 1.73 (br-d, 8 H, NCHCH_2CH_{eq}H), 1.96 (br-d, 8 H, NCHCH $H_{eq}H$), 3.10 (tt, 4 H, NC H_{ax}). ¹³C NMR: $\delta = 1.81$ (GaCH₃), 26.63 (NCHCH₂CH₂CH₂), 28.40 (NCHCH₂CH₂), 38.20 (NCHCH₁), 64.86 (NCH).

[Me₂GaNC₄H₈]₂ (10b): m.p. 74–75 °C. (64–67 °C [7]). ¹H NMR: δ – 0.25 (s, 12 H, GaCH₃), 1.31 (m, 8 H, NCH₂CH₂), 2.62 (t, 8 H, NCH₂). ¹³C NMR: δ – 10.17 (GaCH₃), 24.81 (NCH₂CH₂), 51.19 (NCH₂).

[Me₂GaNC₅H₁₀]₂ (**11b**): m.p. 99–101 °C (99–100 °C [7]). ¹H NMR: $\delta = 0.16$ (s, 12 H, GaC H₃), 1.25 (br s, 12 H, NCH₂C H₂ and NCH₂CH₂C H₂), 2.62 (br s, 8 H, NC H₂). ^{1.3}C NMR: $\delta = 9.17$ (GaC H₃), 24.63 (NCH₂CH₂CH₂), 27.06 (NCH₂CH₂), 51.91 (NCH₂).

[Me₂GaNC₆H₁₂]₂ (12b): m.p. 76–78 °C. ¹H NMR: δ – 0.14 (s, 12 H, GaC H₃), 1.38 (br s, 16 H, NCH₂C H₃, and NCH₂CH₂C H₂), 2.84 (br s, 8 H, NCH₂). ¹³Č NMR: δ – 8.03 (GaCH₃), 27.79 (NCH₂CH₂CH₂), 28.92 (NCH₂CH₂), 54.34 (NCH₂). IR: (cm⁻¹) 2933 (vs), 2856 (s), 1269 (w), 1203 (s), 1170 (w), 1121 (m), 1092 (w), 1031 (w), 1009 (m), 963 (w), 846 (s), 739 (m), 727 (s), 677 (w), 633 (w), 566 (m), 531 (m). MS: m/z 379, 381, 383 (M⁺ – 15). Anal. Calcd. (found) for C₁₆H₃₆Ga₂N₂: C, 48.54 (48.60); H, 9.17 (9.36); N, 7.08 (6.93).

[Me₂GaN(CH₂CH₂)₂NMe]₂ (**13b**): m.p. 138–139 °C. ¹H NMR: δ = 0.18 (s, 12 H, GaCH₃), 2.00 (s. 6 H, NCH₃), 2.06 (br s, 8 H, GaNCH₂CH₂), 2.78 (t, 8 H, GaNCH₂). ¹³C NMR: δ = 8.97 (GaCH₃), 46.69 (NCH₃), 50.79 (GaNCH₂CH₂), 56.30 (GaNCH₂). IR: (cm⁻¹) 2949 (s), 2938 (m), 2904 (s), 2852 (m), 2790 (s), 2764 (w), 2683 (w), 1288 (s), 1205 (m), 1151 (m), 1138 (w), 1117 (m), 1088 (w), 1049 (w), 1005 (s), 912 (w), 877 (s), 776 (w), 727 (vs), 680 (m), 567 (m), 531 (m), 521 9(w), 472 (m). MS: m/z 381, 383, 385 (M⁺ = 15). Anal. Calcd. (found) for C₁₄ H₃₄Ga₂N₄: C. 42.26 (42.57); H, 8.61 (8.72); N, 14.08 (14.36).

2.2.2. Method B, from Me₂GaCl

A solution of Me₂GaCl (2.00 g, 14.8 mmol) in hexane (20 ml) was slowly added to a 50 ml hexane solution of LiNR₂ (14.8 mmol, previously prepared from the reaction of the respective amine and LiBuⁿ) at -40 °C. LiCl precipitated from the solution upon warming the mixture to room temperature. After stirring overnight at room temperature, the solution was decanted and the remaining solids were washed with hexane. The hexane was then removed in vacuo, leaving a white solid, which was purified by recrystallization from toluene at -15 °C.

[Me₂GaNPr₂]₂ (**4b**): 71% yield. M.p. 123–124°C (124°C [12]). ¹H NMR: δ 0.10 (s, 12 H, GaCH₃), 1.14 (d, 24 H, NCH(CH₃)₂), 3.54 (sept., 4 H, NCH). ¹³C NMR: δ – 1.64 (GaCH₃), 26.83 (NCH(CH₃)₂), 52.65 (NCH).

[Me₂GaNBu₂]₂ (**7b**): 63% yield. M.p. 65–66 °C. ¹H NMR: δ 0.01 (m, 12 H, GaCH₃), 0.82 (t, 12 H, NCHCH₂CH₃), 1.16 (m, 12 H, NCHCH₃), 1.55 (m, 8 H, NCHC H_2), 3.19 (m, 4 H, NCH). ¹³C NMR: δ 2.42 (avg., 5 peaks, GaCH₃), 13.43 (avg., 5 peaks, NCHCH₂CH₃), 23.70 (avg., 6 peaks, NCHCH₃), 34.66 (avg., 4 peaks, NCHC H_2), 60.74 (avg., 6 peaks, NCH). IR: (cm⁻¹) 2969 (s), 2938 (m), 2877 (w), 1203 (m), 1170 (w), 1151 (w), 1129 (m), 1022 (w), 977 (w), 920 (w), 891 (m), 732 (vs), 675 (w), 630 (m), 553 (w), 526 (w). Cryoscopic molecular weight: calcd. mol. wt., 456.05. Observed mol. wt. (molality); 452 (0.097). Anal. Calcd. (found) for C₂₀H₄₈Ga₂N₂: C, 52.67 (53.15); H, 10.61 (11.17); N, 6.14 (5.93).

[Me₂GaN(CH₂Ph)₂]₂ (**8b**): 78% yield. M.p. 135– 137 °C [23]. ¹H NMR: δ 0.21 (s, 12 H, GaCH₃), 4.15 (s, 8 H, NCH₂),6.94 (m, 8H, H-2), 7.01 (m, 4H, H-4), 7.03 (m, 8H, H-3) (NCH₂C₆H₅). ¹³C NMR: δ – 5.91 (GaCH₃), 54.35 (NCH₂), 127.03, C-4; 128.06, C-3; 129.14, C-2; 137.64, C-1 (NCH₂C₆H₅).

2.3. Synthesis of $[Me_2 AINBu_2^s]_2$ and $[Me_2 AIN(c-C_6H_{11})_2]_2$

General procedure: in a typical synthesis, 1.00 g (13.9 mmol) of Me₃Al, 13.9 mmol of the respective amine (HNBu⁵₂, HN(c-C₆H₁₁)₂), and 20 ml of toluene were mixed at room temperature and the reaction mixture was heated to reflux for 3 days. The resulting solution was concentrated by removal of volatiles under vacuum and then cooled in the freezer to -15 °C, to yield a colorless crystalline product.

[Me₂AINBu₂]₂ (7a): 85% yield. M.p. 69–71°C. ¹H NMR: δ = 0.26 (m, 12 H, AICH₃), 0.80 (t, 12 H, NCHCH₂CH₃), 1.22 (m, 12 H, NCHCH₃), 1.62 (m, 8 H, NCHCH₂), 3.28 (m, 4 H, NCH). ¹³C NMR: δ = 4.9 (AICH₃), 13.52 (avg., 4 peaks, NCHCH₂CH₃), 23.73 (avg., 2 peaks, NCHCH₃), 34.89 (NCHCH₂), 59.04 (avg., 5 peaks, NCH). IR: (cm⁻¹) 2970 (s), 2936 (m), 2880 (w), 1201 (s), 1171 (w), 1154 (w), 1119 (s), 1020 (w), 981 (m), 919 (w), 891 (m), 743 (vs), 697 (m), 682 (vs), 667 (m), 566 (w). MS: m/z 355 (M⁺ – 15). Anal. Calcd. (found) for C₂₀H₄₈Al₂N₂: C, 64.82 (64.67); H, 13.06 (13.20); N, 7.56 (7.48).

[Me₂AlN(*c*-C₆H₁₁)₂]₂ (**9a**): 75% yield. M.p. 235– 236 °C (239 °C [22]). ¹H NMR: δ – 0.25 (s, 12 H, AlC H₃), 1.00 (qt. 4 H, NCHCH₂CH₂CH H_{ax}), 1.25 (qt, 8 H, NCHCH₂CH H_{ax}), 1.51 (qd, 8 H, NCHCH H_{ax}), 1.53 (br-d, 8 H, NCHCH₂CH₂CH _{cq}H), 1.72 (br-d, 8 H, NCHCH₂C H_{cq}H). 2.08 (br-d, 8 H, NCHCH H_{eq}H), 3.22 (tt. 4 H, NCH_{ax}). ¹³C NMR: δ – 4.09 (GaCH₃), 26.47 (NCHCH₂CH₂CH₂), 28.46 (NCHCH₃CH₂CH₂), 38.25 (NCHCH₂), 62.97 (NCH).

2.4. Collection of X-ray diffraction data and structure solution.

2.4.1. General considerations

In each of the structural studies an X-ray quality crystal was sealed into a thin-walled glass capillary under strictly anaerobic conditions. The crystal was then mounted and accurately aligned on an Enraf Nonius CAD4 diffractometer. Intensity data (MoK α , $\lambda =$ 0.71073Å) were collected at room temperature using graphite-monochromatized radiation. All data were corrected for Lorentz and polarization effects as well as for absorption.

All crystallographic calculations were carried out on an IBM-PC, with the use of the Siemens SHELXTL-PC program package [24]. All positional and anisotropic thermal parameters for all non-hydrogen atoms were refined. Refinement continued until convergence was reached with $\Delta/\sigma < 0.001$; the structural solution was then verified by means of a final difference-Fourier synthesis in which no chemically meaningful residuals were found.

2.4.2. [Me₂GaN(CH₂Ph)₂]₂

A crystal with the dimensions $0.40 \times 0.30 \times$ 0.15 mm³ was chosen for the study. The crystal belongs to the orthorhombic crystal system with the systematic absences hkl for h + k = 2n + 1, 0kl for k = 2n + 1and h0l for h, l = 2n + 1 defining either the centrosymmetric space group Cmcm or one of the noncentrosymmetric space groups Cm_{21} or Ama_{22} . Intensity statistics favored one of the non-centrosymmetric space groups with the final choice being $Cmc2_1$ (No. 36). This choice was later verified by successful solution and refinement of the crystal structure. All hydrogen atoms were placed in calculated positions in the appropriate staggered geometry and with d(C-H) =0.96 Å [25]. The isotropic thermal parameter for each hydrogen atom was set equal to the U_{eq} of the carbon atom to which it was bound. The structure refined to convergence with R = 3.74% and $R_w = 4.19\%$ for those 922 reflections with $|F_0| > 6\sigma(|F_0|)$ and R = 4.18% for all data. The absolute structure was determined by the η -refinement procedure [26]. A final difference-Fourier map showed features in the range of +0.52 to $-0.38e^{-3}$.

2.4.3. [Me₂GaN(CH₂CH₂)₂NMe]₂

A crystal with the dimensions $0.30 \times 0.30 \times 0.20 \text{ mm}^3$ was chosen for the structural study. The crystal belongs to the triclinic crystal system with the possible space groups being the non-centrosymmetric P1 (No. 1) or the centrosymmetric P1 (No. 2). Intensity statistics favored the centrosymmetric case, which was later verified by successful solution and refinement of the crystal structure. The positional and isotropic thermal parameters for all hydrogen atoms were refined. The structure refined to convergence with R = 2.75% and $R_w = 2.93\%$ for those 1135 unique reflections with $|F_v| > 6\sigma(|F_v|)$ and R = 2.91% for all data. A difference-Fourier map showed residual electron density in the range of +0.50 to $-0.38e^{-} \text{\AA}^{-3}$.

3. Results and discussion

The reactions of Me₃Ga with the amines HNMe₃, HNEt₂, HNPrⁿ₂, HNBuⁿ₂, HNBu¹₂, HN(c-C₆H₁₁)₂, HNC_4H_8 , HNC_5H_{10} , HNC_6H_{12} , and $HN(CH_2CH_2)_2NMe$ at 110°C in toluene were monitored by ¹H and ¹³C NMR spectroscopy. These resulted in the formation of the corresponding aminogallanes, [Me₂GaR], in yields ranging from 75–90% via 1,2elimination of CH₁. The aminoalanes [Me₂ AlNBu₂]₂ and $[Me_2AIN(c-C_6H_{11})_2]_2$ were also synthesized by this route. For the reaction of Me_3Ga with $HN(CH_2Ph)_2$, peaks assigned to the desired aminogallane, $[Me_3GaN(CH_2Ph)_3]_3$, were observed in the 'H and 'C NMR spectra while monitoring the progress of the reaction. However, additional spectral peaks suggested that this dimer eliminated one CH₁ molecule per monomer unit and that orthometallation of one phenyl group bound to each nitrogen occurred to yield $[MeGaN(CH_2C_6H_4)(CH_2Ph)]_2$ [23]. $[Me_2GaN(CH_2Ph)_2]_2$ was then synthesized by the reaction of Me₃GaCl with LiN(CH₂Ph)₂. The thermolysis of Me₃Ga with the more sterically demanding amines HNPr¹ and HNBu³, resulted in complicated reactions forming a mixture of products, from which no dimeric aminogallane could be isolated. Thus, $[Me_2GaNPr_2^i]_2$ and [Me,GaNBu',], were synthesized by the reaction of Me, GaCl with LiNPr; and LiNBu; respectively. This requirement to use salt elimination reactions to prepare these three aminogallanes is in contrast to the preparation of the corresponding aminoalanes, which were synthesized by the thermolysis of the respective Me₃Al/secondary amine adducts [20]. Thus, the thermolysis of mixtures of Me₃Ga with less sterically demanding secondary amines represents an efficient synthetic route to aminogallanes of the type [Me₃GaR]₂.

All of the compounds in this study were characterized by ¹H and ¹³C NMR spectroscopy. ¹H and ¹³C NMR chemical shift data for the methyl groups bound to Al and Ga in the aminoalane and aminogallane series are listed in Table 1. Previous studies with $Me_3M \cdot HR$ [20,27] (M = Al, Ga, In) and [Me, AIR], [20] have indicated correlations between the Me-M 1 H and 13 C NMR chemical shifts and the relative steric demands of the secondary amine or amide moieties respectively. This trend is also noted for the aminogallanes, indicating a similar sensitivity to the influence of the amide. There is a good correlation between the aminogallane and aminoalane series Me-M⁻¹H (R = 0.986) and ¹³C (R = 0.999) NMR chemical shifts, which move downfield together with increasing steric demands of the amide moiety. The Me-M¹H and ¹³C NMR chemical shifts for the aminogallanes are also downfield from those of the corresponding aminoalanes by an average of 0.3 ppm and 1.7 ppm in the ¹H and ¹³C NMR spectra respectively. The 'H and ¹³C NMR chemical shift data

Table 1 Me \sim M⁻¹H and ¹³C NMR data for [Me₂AIR]₂ and [Me₂GaR]₂ compounds

		'H		^B C	
R	Number	Ala	Ga	Ala	Ga
NMe ₂	1	-0.59	-0.24	- 11.7	- 10.28
NEt ₂	2	-0.50	-0.18	- 9.9	- 8.38
NPr ⁿ ₂	3	-0.42	-0.12	- 10.2	- 8.63
NPr	4	- 0.27	0.10	-4.0	- 1.64
NBu	5	-0.38	- 0.07	- 10.0	- 8.36
NBu ¹ 2	6	-0.28	0.03	- 6.6	-4.80
NBu ³	7	- 0.26 ^h	0.01	5.0 ^b	- 2.50
$N(CH_2Ph)_2$	8	-0.08	0.21	-7.6	- 5.91
$N(c-C_{6}H_{11})_{2}$	9	-0.25 ^h	0.06	-4.1 ^b	- 1.81
NC ₄ H ₈	10	-0.57	-0.25	-11.0	- 10.17
NC ₅ H ₁₀	11	-0.48	-0.16	- 10.5	-9.17
NC ₆ H ₁ ,	12	-0.44	-0.14	- 9.6	- 8.03
$N(CH_2CH_2)_2NMe$	13	-0.50	-0.18	- 10.4	- 8.97

^a Data obtained from Ref. [20] except where noted.

^b This work.

for the amide moiety in a given aminogallane is consistent with that reported for the corresponding aminoalane, with the ¹³C NMR chemical shift of the carbon directly attached to nitrogen being on the average 2 ppm further downfield for the aminogallane.

The ¹H NMR spectra for $[Me_2GaN(c-C_6H_{11})_2]_2$ [19] and $[Me_2AIN(c-C_6H_{11})_2]_2$ suggest that the cyclohexyl rings are in a locked conformation. Separate ¹H NMR resonances are observed for the axial and equatorial protons on each carbon in the cyclohexyl ring. Assignments have been made based on the observations that (1) J_{HH} in cyclohexyl derivatives follow the order ${}^{3}J_{ax-ax} \approx {}^{2}J_{ax-eq} > {}^{3}J_{eq-eq}$ and (2) $\delta_{H}(axial) < \delta_{H}(equatorial)$ for protons on a given carbon [28].

The dimeric compound $[Me_2GaN(CH_2Ph)_2]_2$ crystallized with four discrete molecules in the unit cell. The labeling of the atoms is provided in Fig. 1. Selected bond distances and angles are collected in Table 2. The molecule possesses mirror symmetry, with the atoms Ga(1), Ga(2), C(1), C(2), C(3), C(4), H(1A), H(2A), H(3A), H(4A) lying on a crystallographic mirror plane. The four-membered Ga₂N₂ core is slightly puckered,

Table 2

Selected bond lengths (Å) and angles (deg) for [Me₃GaN(CH₃Ph)₃],

$Ga(1) \cdots Ga(2)$	2.887(2)	$G_{a(1)-N(1)}$	2.045(6)
Ga(1)-C(1)	1.956(16)	Ga(1) - C(2)	1.968(12)
Ga(1)-N(1A)	2.045(6)	$G_{a}(2) - N(1)$	2.042(6)
Ga(2)-C(3)	1.937(13)	Ga(2)C(4)	2.004(15)
Ga(2)-N(1A)	2.042(6)	N(1)-C(10)	1.494(11)
N(1)-C(20)	1.494(12)		
N(1)-Ga(1)-N(1A)	89.9(3)	Ga(1) - N(1) - Ga(2)	89.9(2)
N(1)-Ga(2)-N(1A)	90.1(3)	N(1)-Ga(1)-C(1)	109.4(4)
N(1)-Ga(1)-C(2)	111.0(4)	C(1)-Ga(1)-C(2)	121.6(7)
C(1)-Ga(1)-N(1A)	109.4(4)	C(2)-Ga(1)-N(1A)	111.0(4)
N(1)-Ga(2)-C(3)	109.9(4)	N(1)-Ga(2)-C(4)	111.5(4)
C(3)-Ga(2)-C(4)	119.9(8)	C(3)-Ga(2)-N(1A)	109.9(4)
C(4)-Ga(2)-N(1A)	111.5(4)	Ga(1)-N(1)-C(10)	114.0(5)
Ga(2) - N(1) - C(10)	112.4(4)	Ga(1) - N(1) - C(20)	112.9(4)
Ga(2) - N(1) - C(20)	114.7(5)	C(10)-N(1)-C(20)	111.3(5)
N(1)-C(10)-C(11)	116.5(6)	N(1)-C(20)-C(21)	115.9(6)

with an angle of fold about the N(1) \cdots N(1A) axis of 2.7° as defined by the intercept of the N(1)–Ga(1)–N(1A) and N(1)–Ga(2)–N(1A) planes. The distances associated with the molecular core are Ga(1)–N(1) = Ga(1)–N(1A) = 2.045(6) Å and Ga(2)–N(1) = Ga(2)–N(1A) = 2.042(6) Å. The cross-ring distances of Ga(1) \cdots Ga(2) = 2.887(2) Å and N(1) \cdots N(1A) = 2.890(2) Å suggest no bonding interactions. The internal angles of the Ga₂N₂ ring are N(1)–Ga(1)–N(1A) = 89.9(3)°, N(1)–Ga(2)–N(1A) = 90.1(3)° and Ga(1)–N(1)–Ga(2) = Ga(1)–N(1A)–Ga(2) = 89.9(2)°. These distances and angles indicate that the Ga₂N₂ core adopts a slightly folded square geometry.

The interligand angles about each gallium atom are $C(1)-Ga(1)-C(2) = 121.6(7)^{\circ}$ and $C(3)-Ga(1)-C(4) = 119.9(8)^{\circ}$. Each nitrogen atom has two benzyl groups bound to it with the interligand angle $C(10)-N(1)-C(20) = 111.3(5)^{\circ}$. These ligands are arranged in such a fashion that the plane formed by the atoms C(10)-N(1)-C(20) intersects the mean plane through the Ga_2N_2 core at 93.3°. The benzyl ligands adopt a staggered conformation with the torsion angle $C(11)-C(10)-C(20)-C(21) = 76.4^{\circ}$. The planes defined by the

Fig. 1. Molecular structure and atom numbering scheme for [Me2GaN(CH2Ph)2]2.

Fig. 2. Molecular structure and atom numbering scheme for [Me₂GaN(CH₂CH₂)₂NMe]₂.

phenyl units of the benzyl groups intercept at an angle of 24.9°. The overall arrangement of the benzyl ligands about the molecular core give this molecule a 'biplanelike' appearance.

The dimeric compound $[Me_2GaN(CH_2CH_2)_2NMe]_2$, crystallized with one molecule per unit cell. This dimeric molecule possesses precise C_i symmetry with the fourmembered Ga_2N_2 ring structure centered about the inversion center $(0,0,\frac{1}{2})$. This symmetry denotes that the four-membered molecular core must be strictly planar. Thus, the structure adopted, by the dimer, is isomorphous with the corresponding aluminum derivative, $[Me_2AIN(CH_2CH_2)_2NMe]_2$ [21]. The labeling of the atoms is provided in Fig. 2. Selected bond distances and angles are collected in Table 3. The interatomic distances within this four-membered core are Ga(1)-N(1) =Ga(1A)-N(1A) = 2.022(2)Å and Ga(1A)-N(1) =Ga(1)-N(1A) = 2.042(2)Å, with the cross-ring distance $Ga(1) \cdots Ga(1A) = 2.932(2)$ Å. The internal angles as-

Table 3 Selected bond lengths (Å) and angles (deg) for [Me_GaN(CH_CH_), NMe],

2.932(1)	Ga(1) - N(1)	2.022(2)
2.042(2)	Ga(1A) - N(1)	2.042(2)
2.022(2)	Ga(1) - C(1)	1.962(6)
1.964(6)	N(1)-C(3)	1.477(5)
1.485(5)		
92.4(1)	N(1)-Ga(1)-N(1A)	87.6(1)
112.5(2)	N(1)-Ga(1)-C(2)	112.1(2)
120.0(2)	C(1)-Ga(1)-N(1A)	109.3(2)
110.6(2)	Ga(1)-N(1)-C(3)	116.8(2)
115.9(2)	C(3) - N(1) - C(6)	106.6(3)
12.1(2)	C(6)-N(1)-Ga(1A)	112.7(2)
112.7(3)	N(1)-C(6)-C(5)	112.3(4)
	2.932(1) 2.042(2) 2.022(2) 1.964(6) 1.485(5) 92.4(1) 112.5(2) 120.0(2) 110.6(2) 115.9(2) 112.1(2) 112.7(3)	2.932(1) Ga(1)-N(1) 2.042(2) Ga(1A)-N(1) 2.022(2) Ga(1)-C(1) 1.964(6) N(1)-C(3) 1.485(5) 92.4(1) N(1)-Ga(1)-N(1A) 112.5(2) N(1)-Ga(1)-C(2) 120.0(2) C(1)-Ga(1)-N(1A) 110.6(2) Ga(1)-N(1)-C(3) 115.9(2) C(3)-N(1)-C(6) 112.1(2) C(6)-N(1)-Ga(1A) 112.7(3) N(1)-C(6)-C(5)

sociated with the molecular core are Ga(1)–N(1)– Ga(1A) = Ga(1)–N(1A)–Ga(1A) = 92.4(1)° and N(1)– Ga(1)–N(1A) = N(1)–Ga(1A)–N(1A) = 87.6(1)°. A structural comparison of [Me₂GaN(CH₂CH₂)₂NMe]₂ with [Me₂AlN(CH₂CH₂)₂NMe]₂ indicates the two are very similar, with the exception of differences in bond distance and angles about gallium due to its increased size. For [Me₂AlN(CH₂CH₂)₂NMe]₂, the Al–N bond distances are 1.968(1)Å and 1.980(2)Å, and the internal angles are N–Al–N = 88.67(6)° and Al–N–Al = 91.33(6)° [21]. The six-membered ring amide fragments, –N(CH₂CH₂)₂NMe, in the two structures are nearly identical.

A comparison of Ga-N and Ga-C bond distances for $[Me_2GaN(CH_2Ph)_2]_2$ and $[Me_2GaN(CH_2CH_2)_2NMe]_2$ with those of similar aminogallane derivatives indicates that they are well within the range of values reported for these types of compound [4,5,9,13,15,16,19,29]. Internal Ga_2N_2 ring angles for $[Me_2GaN(CH_2Ph)_2]_2$ are similar to those for $[Me_2GaN(c-C_6H_{11})_2]_2$, [19], $[Me_{2}GaN(Pr^{1})SnMe_{3}]_{2}$ [19], a n d $[MeGaN(CH_2C_6H_4)(CH_2Ph)]_2$ [23], with all Ga-N-Ga and N-Ga-N angles ranging from 89.3-90.7°. However, several compounds of the type $[R_3GaN(H)R']_2$ [4,5,9,15] have Ga₂N₂ cores that are slightly elongated along the Ga ··· Ga axis, which produces Ga-N-Ga and N-Ga-N angles that range from 93.6-98.3° and 81.7-86.7° respectively. $[Me_2GaN(CH_2CH_2)_2NMe]_2$ has internal Ga_2N_2 ring angles that lie between these ranges with Ga-N-Ga and N-Ga-N angles of 92.4(1)° and 87.6(1)° respectively. The structural data for related aminoalanes derived from secondary amines has been summarized recently [21,30]. An examination of structural and steric trends in these and other aminoalanes has been published [30].

4. Supplementary material

ORTEP drawings, X-ray data collection parameters, tables of atomic positions, thermal parameters, bond distances and angles, and structure factor tables are available.

References

- [1] G.E. Coates, J. Chem. Soc. (1951) 2003.
- [2] D.A. Neumayer, J.G. Ekerdt, Chem. Mater. 8 (1996) 9.
- [3] T.D. Getman, G.W. Franklin, Comments Inorg. Chem. 17 (1995) 79.
- [4] J.T. Park, Y. Kim, J. Kim, K. Kim, Y. Kim, Organometallics 11 (1992) 3320.
- [5] K.M. Waggoner, P.P. Power, J. Am. Chem. Soc. 113 (1991) 3385.
- [6] B. Sen, G.L. White, J. Inorg. Nucl. Chem. 35 (1973) 2207.
- [7] A. Storr, B.S. Thomas, J. Chem. Soc. (1971) 3850.
- [8] O.T. Beachley Jr., C. Bueno, M.R. Churchill, R.B. Hallock, R.G. Simmons, Inorg. Chem. 20 (1981) 2423.
- [9] O.T. Beachley Jr., M.J. Noble, M.R. Churchill, C.H. Lake, Organometallics 11 (1992) 1051.
- [10] B. Lee, W.T. Pennington, G.H. Robinson, Inorg. Chim. Acta 190 (1991) 173.
- [11] J.J. Byers, B. Lee, W.T. Pennington, G.H. Robinson, Polyhedron 11 (1992) 967.
- [12] D.C. Bradley, H.M. Dawes, M.B. Hursthouse, L.M. Smith, M. Thornton-Pett, Polyhedron 9 (1990) 343.
- [13] D.A. Atwood, R.A. Jones, A.H. Cowley, S.G. Bott, J.L. Atwood, J. Organomet. Chem. 434 (1992) 143.

- [14] D.A. Atwood, V.O. Atwood, D.F. Carriker, A.H. Cowley, F.P. Gabai, R.A. Jones, M.R. Bond, C.J. Carrano, J. Organomet. Chem. 463 (1993) 29.
- [15] D.A. Atwood, R.A. Jones. A.H. Cowley, S.G. Bott, J.L. Atwood, Polyhedron 10 (1991) 1897.
- [16] S.T. Barry, D.S. Richeson, J. Organomet. Chem. 510 (1996) 103.
- [17] O.T. Beachley Jr., T.L. Royster Jr., J.R. Arhar, A.L. Rheingold, Organometallics 12 (1993) 1976.
- [18] O.T. Beachley Jr., D.B. Rosenblum, M.R. Churchill, C.H. Lake, L.M. Toomey, Organometallics 15 (1996) 3653.
- [19] W.R. Nutt, K.J. Murry, J.M. Gulick, J.D. Odom, Y. Ding, L. Lebioda, Organometallics 15 (1996) 1728.
- [20] C.J. Thomas, L.K. Krannich, C.L. Watkins, Polyhedron 12 (1993) 389.
- [21] C.B. Lagrone, S.J. Schauer, C.J. Thomas, G.M. Gray, C.L. Watkins, L.K. Krannich, Organometallics 15 (1996) 2458.
- [22] T. Belgardt, J. Storre, A. Klemp, H. Gornitzka, L. Häming, H.-G. Schmidt, H.W. Roesky, J. Chem. Soc. Dalton Trans. (1995) 3747.
- [23] S.J. Schauer, C.H. Lake, C.L. Watkins, L.K. Krannich, Organometallics 15 (1996) 4541.
- [24] Siemens SHELXTL-PC Manual, Release 4.1, 1990, Siemens Analytical Instruments, Madison, WI.
- [25] M.R. Churchill, Inorg. Chem. 12 (1973) 1213.
- [26] D. Rogers, Acta Crystallogr. Sect. A: 37 (1981) 734.
- [27] S.J. Schauer, C.L. Watkins, L.K. Krannich, R.B. Cala, E.M. Gundy, C.B. Lagrone, Polyhedron 14 (1995) 3505.
- [28] R.M. Silverstein, G.C. Bassler, T.C. Morrill, Spectrometric Identification of Organic Compounds, Wiley, New York, 5th edition, 1991, p. 175.
- [29] M. Niemeyer, T.J. Goodwin S.H. Risbud, P.P. Power, Chem. Mater. 8 (1996) 2745.
- [30] S.J. Schauer, G.H. Robinson, J. Coord. Chem. 30 (1993) 197.